Pyridoxine 5'-phosphate oxidase C-terminal dimerisation region
This domain represents one of the two dimerisation regions of the protein, located at the edge of the dimer interface, at the C-terminus, being the last three beta strands, S6, S7, and S8 along with the last three residues to the end. In Swiss:P21159 ...
This domain represents one of the two dimerisation regions of the protein, located at the edge of the dimer interface, at the C-terminus, being the last three beta strands, S6, S7, and S8 along with the last three residues to the end. In Swiss:P21159, S6 runs from residues 178-192, S7 from 200-206 and S8 from 211-215. the extended loop, of residues 167-177 may well be involved in the pocket formed between the two dimers that positions the FMN molecule [1].To date, the only time functional oxidase or phenazine biosynthesis activities have been experimentally demonstrated is when the sequences contain both Pfam:PF01243 and Pfam:PF10590. It is unknown the role performed by each domain in bringing about molecular functions of either oxidase or phenazine activity [2].
This entry includes pyridoxamine 5'-phosphate oxidases, FMN flavoproteins that catalyse the oxidation of pyridoxamine-5-P (PMP) and pyridoxine-5-P (PNP) to pyridoxal-5-P (PLP). This reaction serves as the terminal step in the de novo biosynthesis of ...
This entry includes pyridoxamine 5'-phosphate oxidases, FMN flavoproteins that catalyse the oxidation of pyridoxamine-5-P (PMP) and pyridoxine-5-P (PNP) to pyridoxal-5-P (PLP). This reaction serves as the terminal step in the de novo biosynthesis of PLP in Escherichia coli and as a part of the salvage pathway of this coenzyme in both E. coli and mammalian cells [1-5]. The binding sites for FMN and for substrate have been highly conserved throughout evolution. In some species, the coenzyme F420 may perform the FMN role [7]. This entry represents the N-terminal segment of these proteins, which is involved in FMN binding when they form the dimer [5]. In human PNPO, it has been shown that this region contains some of the residues that constitute the PLP allosteric site which regulates its activity [4]. The C-terminal region of these proteins (Pfam:PF10590) is involved in dimerisation and also contributes some residues to the PLP allosteric site. Some of the members included in this entry are involved in phenazine biosynthesis [6].