This is a family of 2-dehydropantoate 2-reductases also known as ketopantoate reductases, EC:1.1.1.169. The reaction catalysed by this enzyme is: (R)-pantoate + NADP(+) <=> 2-dehydropantoate + NADPH. AbpA catalyses the NADPH reduction of ketopanto ...
This is a family of 2-dehydropantoate 2-reductases also known as ketopantoate reductases, EC:1.1.1.169. The reaction catalysed by this enzyme is: (R)-pantoate + NADP(+) <=> 2-dehydropantoate + NADPH. AbpA catalyses the NADPH reduction of ketopantoic acid to pantoic acid in the alternative pyrimidine biosynthetic (APB) pathway [2]. ApbA and PanE are allelic [2]. ApbA, the ketopantoate reductase enzyme is required for the synthesis of thiamine via the APB biosynthetic pathway [1].
This is a family of 2-dehydropantoate 2-reductases also known as ketopantoate reductases, EC:1.1.1.169. The reaction catalysed by this enzyme is: (R)-pantoate + NADP(+) <=> 2-dehydropantoate + NADPH. AbpA catalyses the NADPH reduction of ketopantoi ...
This is a family of 2-dehydropantoate 2-reductases also known as ketopantoate reductases, EC:1.1.1.169. The reaction catalysed by this enzyme is: (R)-pantoate + NADP(+) <=> 2-dehydropantoate + NADPH. AbpA catalyses the NADPH reduction of ketopantoic acid to pantoic acid in the alternative pyrimidine biosynthetic (APB) pathway [2]. ApbA and PanE are allelic [2]. ApbA, the ketopantoate reductase enzyme is required for the synthesis of thiamine via the APB biosynthetic pathway [1].
Ketopantoate reductase (KPR), isolated from Escherichia coli, catalyses the reduction of ketopantoate by NADPH to form pantoate and NADP+. This is the second reaction in the pathway for the biosynthesis of pantothenate (vitamin B5). KPR is a member of the 6-phosphogluconate dehydrogenase superfamily. The reaction proceeds by a sequential ordered bi:bi kinetic mechanism, with NADPH binding first, followed by a conformational change and the binding of ketopantoate. After the reaction NADP+ dissociates first, followed by pantoate.